6,086 research outputs found

    Mitigating the water footprint of export cut flowers from the Lake Naivasha Basin, Kenya

    Get PDF
    Kenya’s cut-flower industry has been praised as an economic success as it\ud contributed an annual average of US141millionforeignexchange(7 141 million foreign exchange (7% of Kenyan export value) over the period 1996–2005 and about US 352 million in 2005 alone. The industry also provides employment, income and infrastructure such as schools and hospitals for a large population around Lake Naivasha. On the other hand, the commercial farms have been blamed for causing a drop in the lake level, polluting the lake and for possibly affecting the lake’s biodiversity. The objective of this study is to quantify the water footprint within the Lake Naivasha Basin related to cut flowers and analyse the possibility to mitigate this footprint by involving cut-flower traders, retailers and consumers overseas. The water footprint of one rose flower is estimated to be 7–13 litres. The total virtual water export related to export of cut flowers from the Lake Naivasha Basin was 16 Mm3/yr during the period 1996–2005 (22 % green water; 45 % blue water; 33 % grey water). Our findings show that, although the decline in the lake level can be attributed mainly to the commercial farms around the lake, both the commercial farms and the smallholder farms in the upper catchment are responsible for the lake pollution due to nutrient load. The observed decline in the lake level and deterioration of the lake’s biodiversity calls for sustainable management of the basin through pricing water at its full cost and other regulatory measures. Pricing water at full marginal cost is important, but the conditions in Kenya are unlikely to result in serious steps to full-cost pricing, since many farmers resist even modest water price increases and government is lacking means of enforcement. We propose an alternative in this study that can be implemented with a focus on sustainable water use in flower farming around Lake Naivasha alone. The proposal involves a water-sustainability agreement between major agents along the cut-flower supply chain and includes a premium to the final product at the retailer end of the supply chain. Such a ‘water sustainability premium’ will raise awareness among flower consumers and—when channelled back to the farmers—facilitate the flower farms to install the necessary equipment and implement the right measures to use water in a sustainable manner. The collected premiums will generate a fund that can be used for financing measures to reduce the water footprint and to improve watershed managemen

    Modeling of Multimodal Effects in Two-port Ring-Resonator Circuits for Sensing Applications

    Get PDF
    Multimodal effects in two-port ring-resonator circuits for sensing applications were modeled using a transfer matrix method and previously published rigorous 3-D modeling tools. Device parameters which are relevant for evaluating sensing performance are numerically deduced from the model. Some examples will be given.\u

    Lasercooled RaF as a promising candidate to measure molecular parity violation

    Full text link
    The parameter WaW_\mathrm{a}, which characterizes nuclear spin-dependent parity violation effects within the effective molecular spin-rotational Hamiltonian, was computed for the electronic ground state of radium fluoride (RaF) and found to be one of the largest absolute values predicted so far. These calculations were performed with the complex generalised Hartree-Fock method within a two-component (quasi-relativistic) zeroth-order regular approximation framework. Peculiarities of the molecular electronic structure of RaF lead to highly diagonal Franck-Condon matrices between vibrational states of the electronic ground and first excited states, which renders the molecule in principle suitable for direct laser cooling. As a trapped gas of cold molecules offers a superior coherence time, RaF can be considered a promising candidate for high-precision spectroscopic experiments aimed at the search of molecular parity-violation effects.Comment: 4.5 pages, 1 figure, 2 tables. Supplementary material can be requested from the authors. Minor changes to version

    Optimization of the composition of crop collections for ex situ conservation

    Get PDF
    Many crop genetic resources collections have been established without a clearly defined conservation goal or mandate, which has resulted in collections of considerable size, unbalanced composition and high levels of duplication. Attempts to improve the composition of collections are hampered by the fact that conceptual views to optimize collection composition are very rare. An optimization strategy is proposed herein, which largely builds on the concepts of core collection and core selection. The proposed strategy relies on hierarchically structuring the crop gene pool and assigning a relative importance to each of its different components. Comparison of the resulting optimized distribution of the number of accessions with the actual distribution allows identification of under- and over-representation within a collection. Application of this strategy is illustrated by an example using potato. The proposed optimization strategy is applicable not only to individual genebanks, but also to consortia of cooperating genebanks, which makes it relevant for ongoing activities within projects that aim at sharing responsibilities among institutions on the basis of rational conservation, such as a European genebank integrated system and the global cacao genetic resources network CacaoNet

    The water footprint of cotton consumption

    Get PDF
    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this report is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the impacts. The study distinguishes between three types of impact: evaporation of infiltrated rainwater for cotton growth (green water use), withdrawal of ground- or surface water for irrigation or processing (blue water use) and water pollution during growth or processing. The latter impact is quantified in terms of the dilution volume necessary to assimilate the pollution. For the period 1997-2001 the study shows that the worldwide consumption of cotton products requires 256 Gm3 of water per year, out of which about 42% is blue water, 39% green water and 19% dilution water. Impacts are typically cross-border. About 84% of the water footprint of cotton consumption in the EU25 region is located outside Europe, with major impacts particularly in India and Uzbekistan. Given the general lack of proper water pricing mechanisms or other ways of transmitting production-information, cotton consumers have little incentive to take responsibility for the impacts on remote water systems
    corecore